Symbol
μ - population mean - mean of population values
σ2 - variance - variance of population values
σX - standard deviation - standard deviation value of random variable X
x or M - sample mean - average / arithmetic mean
s 2 - sample variance - population samples variance estimator
s - sample standard deviation - population samples standard deviation estimator
zx - standard score, zx = (x-x) / sx
X ~ - distribution of X - distribution of random variable X, X ~ N(0,3)
N(μ,σ2) - normal distribution
gaussian distribution
X ~ N(0,3)
U(a,b) - uniform distribution - equal probability in range a,b; X ~ U(0,3)
exp(λ) - exponential distribution
f (x) = λe-λx , x≥0
gamma(c, λ)
gamma distribution
f (x) = λ c xc-1e-λx / Γ(c), x≥0
χ 2(k)
chi-square distribution
f (x) = xk/2-1e-x/2 / ( 2k/2 Γ(k/2) )
F (k1, k2)
F distribution
Bin(n,p)
binomial distribution
f (k) = nCk pk(1-p)n-k
Poisson(λ)
Poisson distribution
f (k) = λke-λ / k!
Geom(p)
geometric distribution
f (k) = p(1-p) k
HG(N,K,n)
hyper-geometric distribution
Bern(p)
Bernoulli distribution
σ2 - variance - variance of population values
σX - standard deviation - standard deviation value of random variable X
x or M - sample mean - average / arithmetic mean
s 2 - sample variance - population samples variance estimator
s - sample standard deviation - population samples standard deviation estimator
zx - standard score, zx = (x-x) / sx
X ~ - distribution of X - distribution of random variable X, X ~ N(0,3)
N(μ,σ2) - normal distribution
gaussian distribution
X ~ N(0,3)
U(a,b) - uniform distribution - equal probability in range a,b; X ~ U(0,3)
exp(λ) - exponential distribution
f (x) = λe-λx , x≥0
gamma(c, λ)
gamma distribution
f (x) = λ c xc-1e-λx / Γ(c), x≥0
χ 2(k)
chi-square distribution
f (x) = xk/2-1e-x/2 / ( 2k/2 Γ(k/2) )
F (k1, k2)
F distribution
Bin(n,p)
binomial distribution
f (k) = nCk pk(1-p)n-k
Poisson(λ)
Poisson distribution
f (k) = λke-λ / k!
Geom(p)
geometric distribution
f (k) = p(1-p) k
HG(N,K,n)
hyper-geometric distribution
Bern(p)
Bernoulli distribution