Statistics Tutorial: Important Statistics Formulas
This web page presents statistics formulas described in the Stat Trek tutorials. Each formula links to a web page that explains how to use the formula.Parameters
- Population mean = μ = ( Σ Xi ) / N
 - Population standard deviation = σ = sqrt [ Σ ( Xi - μ )2 / N ]
 - Population variance = σ2 = Σ ( Xi - μ )2 / N
 - Variance of population proportion = σP2 = PQ / n
 - Standardized score = Z = (X - μ) / σ
 - Population correlation coefficient = 
ρ = [ 1 / N ] * Σ { [ (Xi - μX) / σx ] * [ (Yi - μY) / σy ] } 
Statistics
Unless otherwise noted, these formulas assume simple random sampling.- Sample mean = x = ( Σ xi ) / n
 - Sample standard deviation = s = sqrt [ Σ ( xi - x )2 / ( n - 1 ) ]
 - Sample variance = s2 = Σ ( xi - x )2 / ( n - 1 )
 - Variance of sample proportion = sp2 = pq / (n - 1)
 - Pooled sample proportion = p = (p1 * n1 + p2 * n2) / (n1 + n2)
 - Pooled sample standard deviation =
- sp = sqrt [ (n1 - 1) * s12 + (n2 - 1) * s22 ] / (n1 + n2 - 2) ]
 
 - Sample correlation coefficient = 
- r = [ 1 / (n - 1) ] * Σ { [ (xi - x) / sx ] * [ (yi - y) / sy ] }
 
 
Correlation
- Pearson product-moment correlation = r = Σ (xy) / sqrt [ ( Σ x2 ) * ( Σ y2 ) ]
 - Linear correlation (sample data) = 
r = [ 1 / (n - 1) ] * Σ { [ (xi - x) / sx ] * [ (yi - y) / sy ] } - Linear correlation (population data) =
- ρ = [ 1 / N ] * Σ { [ (Xi - μX) / σx ] * [ (Yi - μY) / σy ] }
 
 
Simple Linear Regression
- Simple linear regression line: y = b0 + b1x
 - Regression coefficient = b1 = Σ [ (xi - x) (yi - y) ] / Σ [ (xi - x)2]
 - Regression slope intercept = b0 = y - b1 * x
 - Regression coefficient = b1 = r * (sy / sx)
 - Standard error of regression slope = 
sb1 = sqrt [ Σ(yi - yi)2 / (n - 2) ] / sqrt [ Σ(xi - x)2 ] 
Counting
- n factorial: n! = n * (n-1) * (n - 2) * . . . * 3 * 2 * 1. By convention, 0! = 1.
 - Permutations of n things, taken r at a time: nCr = n! / (n - r)!
 - Combinations of n things, taken r at a time: nCr = n! / r!(n - r)! = nPr / r!
 
Probability
- Rule of addition: P(A ∪ B) = P(A) + P(B) - P(A ∩ B)
 - Rule of multiplication: P(A ∩ B) = P(A) P(B|A)
 - Rule of subtraction: P(A') = 1 - P(A)
 
Random Variables
In the following formulas, X and Y are random variables, and a and b are constants.
- Expected value of X = E(X) = μx = Σ [ xi * P(xi) ]
 - Variance of X = 
Var(X) = σ2 = Σ [ xi - E(x) ]2 * P(xi) = Σ [ xi - μx ]2 * P(xi) - Normal random variable = z-score = z = (X - μ)/σ
 - Chi-square statistic = Χ2 = [ ( n - 1 ) * s2 ] / σ2
 - f statistic = f = [ s12/σ12 ] / [ s22/σ22 ]
 - Expected value of sum of random variables = 
E(X + Y) = E(X) + E(Y) - Expected value of difference between random variables = 
E(X - Y) = E(X) - E(Y) - Variance of the sum of independent random variables = 
Var(X + Y) = Var(X) + Var(Y) - Variance of the difference between independent random variables = 
Var(X - Y) = E(X) + E(Y) 
Sampling Distributions
- Mean of sampling distribution of the mean = μx = μ
 - Mean of sampling distribution of the proportion = μp = P
 - Standard deviation of proportion = σp = sqrt[ P * (1 - P)/n ] = sqrt( PQ / n )
 - Standard deviation of the mean = σx = σ/sqrt(n)
 - Standard deviation of difference of sample means = 
σd = sqrt[ (σ12 / n1) + (σ22 / n2) ] - Standard deviation of difference of sample proportions = 
σd = sqrt{ [P1(1 - P1) / n1] + [P2(1 - P2) / n2] } 
Standard Error
- Standard error of proportion = SEp = sp = sqrt[ p * (1 - p)/n ] = sqrt( pq / n )
 - Standard error of difference for proportions = 
SEp = sp = sqrt{ p * ( 1 - p ) * [ (1/n1) + (1/n2) ] } - Standard error of the mean = SEx = sx = s/sqrt(n)
 - Standard error of difference of sample means = 
SEd = sd = sqrt[ (s12 / n1) + (s22 / n2) ] - Standard error of difference of paired sample means = 
SEd = sd = { sqrt [ (Σ(di - d)2 / (n - 1) ] } / sqrt(n) - Pooled sample standard error = spooled = sqrt [ (n1 - 1) * s12 + (n2 - 1) * s22 ] / (n1 + n2 - 2) ]
 - Standard error of difference of sample proportions = 
sd = sqrt{ [p1(1 - p1) / n1] + [p2(1 - p2) / n2] } 
Discrete Probability Distributions
- Binomial formula: P(X = x) = b(x; n, P) = nCx * Px * (1 - P)n - x = nCx * Px * Qn - x
 - Mean of binomial distribution = μx = n * P
 - Variance of binomial distribution = σx2 = n * P * ( 1 - P )
 - Negative Binomial formula: P(X = x) = b*(x; r, P) = x-1Cr-1 * Pr * (1 - P)x - r
 - Mean of negative binomial distribution = μx = rQ / P
 - Variance of negative binomial distribution = σx2 = r * Q / P2
 - Geometric formula: P(X = x) = g(x; P) = P * Qx - 1
 - Mean of geometric distribution = μx = Q / P
 - Variance of geometric distribution = σx2 = Q / P2
 - Hypergeometric formula: P(X = x) = h(x; N, n, k) = [ kCx ] [ N-kCn-x ] / [ NCn ]
 - Mean of hypergeometric distribution = μx = n * k / N
 - Variance of hypergeometric distribution = σx2 = n * k * ( N - k ) * ( N - n ) / [ N2 * ( N - 1 ) ]
 - Poisson formula: P(x; μ) = (e-μ) (μx) / x!
 - Mean of Poisson distribution = μx = μ
 - Variance of Poisson distribution = σx2 = μ
 - Multinomial formula: P = [ n! / ( n1! * n2! * ... nk! ) ] * ( p1n1 * p2n2 * . . . * pknk )
 
Linear Transformations
For the following formulas, assume that Y is a linear transformation of the random variable X, defined by the equation: Y = aX + b.
- Mean of a linear transformation = E(Y) = Y = aX + b.
 - Variance of a linear transformation = Var(Y) = a2 * Var(X).
 - Standardized score = z = (x - μx) / σx.
 - t-score = t = (x - μx) / [ s/sqrt(n) ].
 
Estimation
- Confidence interval: Sample statistic + Critical value * Standard error of statistic
 - Margin of error = (Critical value) * (Standard deviation of statistic)
 - Margin of error = (Critical value) * (Standard error of statistic)
 
Hypothesis Testing
- Standardized test statistic = (Statistic - Parameter) / (Standard deviation of statistic)
 - One-sample z-test for proportions: z-score = z = (p - P0) / sqrt( p * q / n )
 - Two-sample z-test for proportions: z-score = z = z = [ (p1 - p2) - d ] / SE
 - One-sample t-test for means: t-score = t = (x - μ) / SE
 - Two-sample t-test for means: t-score = t = [ (x1 - x2) - d ] / SE
 - Matched-sample t-test for means: t-score = t = [ (x1 - x2) - D ] / SE = (d - D) / SE
 - Chi-square test statistic = Χ2 = Σ[ (Observed - Expected)2 / Expected ]
 
Degrees of Freedom
The correct formula for degrees of freedom (DF) depends on the situation (the nature of the test statistic, the number of samples, underlying assumptions, etc.).
- One-sample t-test: DF = n - 1
 - Two-sample t-test: DF = (s12/n1 + s22/n2)2 / { [ (s12 / n1)2 / (n1 - 1) ] + [ (s22 / n2)2 / (n2 - 1) ] }
 - Two-sample t-test, pooled standard error: DF = n1 + n2 - 2
 - Simple linear regression, test slope: DF = n - 2
 - Chi-square goodness of fit test: DF = k - 1
 - Chi-square test for homogeneity: DF = (r - 1) * (c - 1)
 - Chi-square test for independence: DF = (r - 1) * (c - 1)
 
Sample Size
Below, the first two formulas find the smallest sample sizes required to achieve a fixed margin of error, using simple random sampling. The third formula assigns sample to strata, based on a proportionate design. The fourth formula, Neyman allocation, uses stratified sampling to minimize variance, given a fixed sample size. And the last formula, optimum allocation, uses stratified sampling to minimize variance, given a fixed budget.
- Mean (simple random sampling): n = { z2 * σ2 * [ N / (N - 1) ] } / { ME2 + [ z2 * σ2 / (N - 1) ] }
 - Proportion (simple random sampling): n = [ ( z2 * p * q ) + ME2 ] / [ ME2 + z2 * p * q / N ]
 - Proportionate stratified sampling: nh = ( Nh / N ) * n
 - Neyman allocation (stratified sampling): nh = n * ( Nh * σh ) / [ Σ ( Ni * σi ) ]
 - Optimum allocation (stratified sampling):
nh = n * [ ( Nh * σh ) / sqrt( ch ) ] / [ Σ ( Ni * σi ) / sqrt( ci ) ] 
No comments:
Post a Comment